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MATHEMATICAL LIMITS ON DIFFERENCES 
BETWEEN A POPULATION AND A SUBPOPULATION 

1.       INTRODUCTION 

The U.S. Department of Energy's Chemical-Biological Nonproliferation Program 
has the task of Improving the U.S. capability to prepare for and respond to the use of 
chemical and biological wartere agents against the civilian population. The Modeling 
Subgroup of the Technology Development Program Area is responsible for developing 
models of atmospheric transport and dispersion of chemical vwarfare agents. To assess 
casualties, these models require estimates of chemical warfare agent toxicity to the 
civilian population. However, the present chemical warfare agent toxicity estimates 
(Grotte and Yang 2001) are for male soldiers. In the absence of data relevant to the 
required soldier-to-dvllian adjustment, either no adjustment is done or a guess is made. 
Concern that guesses at the required adjustment may exceed what is mathematically 
possible led to this report. Because a subpopulation is part of the population, there are 
mathematical limits on how much a subpopulation can differ from the population. 
Suppose, for example, that a resistant subpopulation is 20% of the entire population. 
The extreme placement for this subpopulation would be that it is the "PPer 20% of tiie 
population. Then the median of this subpopulation would be at the 90  percentile of tiie 
population. For a normal distribution, the 90* percentile is 1.28 standard deviations 
above the mean. For any distribution with finite variance, 90% of the population must lie 
within 3.16 standard deviations of the mean (by Chebyshev's Inequality; see, for 
example. Mood, Graybill, and Boes 1974); hence, the 90* percentile of tiie population 
(and the median of the subpopulation) cannot be farther away from the mean than 3.16 
standard deviations. Although the placement of a subpopulation into the tail of tiie 
population distribution is not realistic, it establishes the existence of limits on tiie 
difference between a population and a subpopulation. Further, it reveals tiiree relevant 
factors: tiie size of the subpopulation, the standard deviation of tiie population, and tiie 
distribution of the population. The next section develops the theory and notation for a 
more reasonable model. 

2.        THEORY AND NOTATION 

The susceptibility of the population to a toxicant was modeled by a lognormal 
distiibution of effective doses. (The theory and methods are also applicable to 
dosages.) Toxicologists characterize a lognomial distribution by its median effective 
dose (EDso) and its probit slope, m. The probit slope is the reciprocal of tiie standard 
deviation of log (effective dose), where log is tiie common (base 10) logarithm. 
Individual susceptibilities are given in Z units of the population by 

Z = mpop [log(ED) - log(ED5o)l. (1) 



where mpop is the probit slope of the population and ED is the effective dose for an 
individual. Thus, the population is represented by a standard (mean zero, variance one) 
normal distribution. 

2.1     SubpoDulation Model. 

The distribution of effective doses for a subpopulation was modeled as a 
lognomial distribution—hence, the distribution of log {ED) for the subpopulation follows 
the bell-shaped normal curve. Let \i and a be the subpopulation mean and the 
subpopulation standard deviation in Z units of the population—that is, \i and o are 
calculated from the effective doses of the subpopulation after transfonning the effective 
doses by (1). Thus, 

and 

M = '"pop [log(subpopulation ED50) - log(population ED50)] 

o =a8ub/Opop= mpop/nigub 

(2) 

(3) 

where Osub and Opop are the standard deviations of the subpopulation and the 
population, respectively, in log(ED) units and maub is the probit slope of the 
subpopulation. The size of the subpopulation, 9. is defined as a fraction of the 
population. Figure 1 shows a subpopulation of size 9 = 0.3. The curves in Figure 1 are 
not probability densities but frequencies—nonmal curves fit to histograms—as 
described, for example, in chapter 5 of Dixon and Massey (1969). 

Figure 1. Model for a Subpopulation of Size 6 = 0.3 

o 
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2.2     Feasible Values for Subpopulation Parameters. 

The combinations of |J and a that allow the subpopulation bell curve to remain 
entirely within (or under) the population bell curve constitute the feasible region for p 
and a. Figure 2 shows the feasible region (shaded) for a subpopulation of size 9 = 0.3. 
Crosier and Sommerville (2002) determined feasible values of p and a by numerical 
searches; Figure 2, however, was obtained from 

M = ±[-2(1-a^)ln(e/a)] 1/2 (4) 

where In is the natural (base e) logarithm. Equation (4) gives the upper and lower limit 
of the feasible range for p as a function of 9 and a. Appendix A gives the derivation of 
(4); the ranges of 9 and a are Q <9 sa < 1. When p Is plotted on the y-axis, as in 
Figure 2, the feasible region is symmetrical about the x-axis; p is positive for a resistant 
subpopulation and negative for a sensitive subpopulation. Henceforth, the term feasible 
region will be limited to either the resistant subpopulation case or the sensitive 
subpopulation case. It Is only necessary to study one case; the results apply to the 

Figure 2. Feasible Region of o and \i for a Subpopulation of Size 0 - 0.3 
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other case by symmetry. Figures 3 (minimum a). 4 (maximum a), and 5 (maximum u) 
show subpopulations that correspond to limits of the feasible region for M and o when 
9 = 0.3. The case shown in Figure 3 (minimum a) is highly unlil<ely. To obtain such a 
subpopulation, there would have to be a strong selection bias for individuals with 
effective doses near the population EDSQ. 

Note that Figure 4 has M = 0 and a = 1; these are the expected values of the 
subpopulation parameters when the subpopulation is a random sample of the 
population. If one considers the age, sex, health, and physical fitness status of military 
personnel as irrelevant to their susceptibility to chemical warfare agents, then military 
personnel can be regarded as a random sample of the general population 

Figure 3. Subpopulation of Size 6 = 0.3 with Minimum Standard Deviation 
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Figure 4. Subpopulation of Size 0 « 0.3 with Maximum Standard Deviation 
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Figure 5. Subpopulation of Size 6 » 0.3 with IVIaximum IVIean 
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2.3     Selection of Subpopulation Parameters. 

Given the feasible region for a resistant or sensitive subpopulation of size 9, how 
does one select p and a to represent the subpopulation? There are many choices, 
which can be categorized under two philosophies: the worst-case combination of p and 
a, or typical values of p and a. 

For conversion of a population ED50 to a resistant subpopulation ED50, the 
largest conversion factor is obtained by selecting the value of a—call it Oy— that yields 
the maximum value for p, denoted px- Appendix B gives the mathematical derivation 
and numerical method used to find Ox. For conversion of a resistant subpopulation ED50 
to the population ED50, the conversion factor will be less than one; the smallest 
conversion factor is obtained by selecting the value of a that maximizes the ratio p /a. 
Denote the values of p and a of the largest ratio by pr and Or. Generation of pr and Or is 
discussed in Appendix C. 

Two estimators of typcal values for p and a are the mid-range and the centroid. 
The mid-range estimates are: pm = Px / 2 and Om = (6 +1) / 2. The formulas for the 
centroid estimates pc and Oc are in the form of an integral divided by the area of the 
feasible region, which is also expressed as an integral. The integral for the numerator 
of Pc has analytic solution (99-6 ln(9) - 9^ - 8) / 9. but the integrals for the numerator 
of Oc and for the area of the feasible region were evaluated numerically. 

Figure 1 is based on the centroid values pc= 0.403 and ac=0.645 for a resistant 
subpopulation of size 9 = 0.3, whereas Figure 5 uses the maximum-mean values px= 
0.946 and Ox= 0.633for a resistant subpopulation of size 0 = 0.3. The maximum-mean 
case in Figure 5 might be appropriate for desaibing the physical fitness of the military 
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personnel (because physical fitness is a selection criterion or requirement for military 
personnel), but it may be excessive for describing susceptibility to chemical warfare 
agents. 

3.        RESULTS 

3.1 SubpoDulation Parameters. 

The table gives the standard deviations and means for resistant subpopulations; 
for sensitive subpopulations, multiply the means by -1. The units for the standard 
deviations and means in the table are Z units of the population. 

3.2 Conversion of Toxicitv Estimates. 

Suppose a population has an ED50 of 100 and a probit slope of 5. To convert 
these estimates to a sensitive subpopulation of size 9 = 0.2,1 use the centroid values 
from the table, pc = - 0.508 and Oc = 0.591, which are in Z units of the population. 
Equation (2) may be used to convert MC = -0.508 to the median effective dose for the 
subpopulation. Substituting into equation (2) yields -0.508 = 5 pog(subpopulation 
EDso) - log(IOO)], or subpopulation ED50 = antilog [-0.508 / 5 + log(IOO)] = 79 
(rounded). Altematively. one may develop a conversion factor to convert the population 
ED50 to the subpopulation EDso- The factor to convert from effective dose A to effective 
dose B may be obtained from EDAand EDB expressed in Z units of the population- 
denoted ZA and ZB, respectively—by: 

Conversion Factor = EDs / EDA = antilog [ ( Za - ZA ) / mpop ]. (5) 

Applying (5) with ZA = 0, Zs = - 0.508, and mpop = 5 yields 0.791, so the EDx of the 
subpopulation is (100)(0.791) = 79 (rounded). To convert the population probit slope to 
a probit slope for the subpopulation, I substitute Oc = 0.591 from the table into equation 
(3): 0.591 = Osub/Opop = mpop/msub, or m8ub= mpop/0.591. Thus, dividing the population 
probit slope (mpop = 5) by Oc = 0.591 yields the subpopulation probit slope: 
msub = 5/0.591 = 8 (rounded). 

Conversions from a subpopulation to the population require that the probit slope 
be converted before conversion of the ED50 because the population probit slope is 
needed to convert the ED50. For example, suppose a resistant subpopulation of size 
e = 0.3 has an EDso of 200 and a probit slope of 10. First convert the probit slope: from 
the table. Oc =0.645, and applying mpop = (m.ub)(ac) gives mpop = (10)(0.645) = 6.45. 
Then use mpop = 6.45 to convert the ED50: applying (5) with ZA = 0.403, Zs = 0, and 
mpop = 6.45 yields a conversion factor of 0.866. Thus, the population has an ED50 of 
(200)(0.866) = 173 and a probit slope of 6 (rounded). 

12 



Table. Subpopulation Parameters 

Subpopulation Standard Deviations Resistant Stibpopulation Means 

Max Max Max Max 

Size Mean Ratio Centroid Mean Ratio Centroid 

(6) (Ox) M (Oc) (M (Hr) (Mc) 

0.001 0.285 0.002 0.446 3.223 1.000 1.408 
0.002 0.301 0.003 0.450 3.020 1.000 1.318 
0.003 0.312 0.005 0.452 2.896 1.000 1.263 
0.004 0.320 0.007 0.455 2.805 1.000 1.222 
0.005 0.327 0.008 0.456 2.733 1.000 1.190 
0.006 0.333 0.010 0.458 2.672 1.000 1.164 
0.007 0.338 0.012 0.460 2.621 1.000 1.141 
0.008 0.343 0.013 0.461 2.575 1.000 1.120 
0.009 0.347 0.015 0.463 2.535 1.000 1.102 
0.010 0.351 0.016 0.464 2.498 1.000 1.086 
0.020 0.381 0.033 0.475 2.245 0.999 0.973 
0.030 0.402 0.049 0.484 2.086 0.998 0.902 
0.040 0.419 0.066 0.492 1.968 0.996 0.850 
0.050 0.434 0.082 0.500 1.873 0.993 0.807 
0.060 0.447 0.098 0.507 1.793 0.990 0.772 
0.070 0.458 0.115 0.514 1.723 0.987 0.741 
0.080 0.469 0.131 0.520 1.661 0.983 0.714 
0.090 0.480 0.147 0.527 1.605 0.978 0.689 
0.100 0.489 0.163 0.533 1.554 0.974 0.667 
0.110 0.499 0.178 0.539 1.507 0.968 0.646 
0.120 0.507 0.194 0.545 1.463 0.962 0.627 
0.130 0.516 0.210 0.551 1.422 0.956 0.609 
0.140 0.524 0.225 0.557 1.384 0.949 0.592 
0.150 0.532 0.240 0.563 1.347 0.942 0.576 
0.160 0.540 0.255 0.569 1.313 0.935 0.561 
0.170 0.547 0.270 0.575 1.280 0.927 0.547 
0.180 0.555 0.285 0.580 1.248 0.919 0.533 
0.190 0.562 0.300 0.586 1.218 0.910 0.520 
0.200 0.569 0.314 0.591 1.189 0.901 0.508 
0.250 0.602 0.383 0.619 1.059 0.853 0.451 
0.300 0.633 0.447 0.645 0.946 0.800 0.403 
0.350 0.663 0.507 0.672 0.846 0.743 0.360 
0.400 0.691 0.563 0.698 0.756 0.683 0.321 
0.450 0.719 0.614 0.723 0.673 0.623 0.286 
0.500 0.746 0.662 0.749 0.596 0.562 0.253 
0.550 0.772 0.707 0.774 0.523 0.501 0.222 
0.600 0.798 0.748 0.799 0.455 0.441 0.193 
0.650 0.824 0.787 0.825 0.390 0.381 0,166 
0.700 0.849 0.823 0.850 0.328 0.323 0.139 
0.750 0.875 0.857 0.875 0.269 0.266 0.114 
0.800 0.900 0.889 0.900 0.212 0.210 0.090 
0.850 0.925 0.919 0.925 0.156 0.156 0.066 
0.900 0.950 0.947 0.950 0.103 0.103 0.044 
0.950 0.975 0.974 0.975 0.051 0.051 0.021 

■ For sensitive subpopulations, multiply the means by -1. 
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3.3     Comparison to Blood Lead Data. 

Blood lead data from the second National Health And Nutrition Examination 
Survey were analyzed in terms of subpopulation parameters and compared to the 
subpopulation nradel. A report by the National Center for Health Statistics, Annest and 
Mahaffey (1984) gives geometric mean blood lead levels, geometric standard 
deviations, and population size for the target population (non-institutionalized civilians 
aged 6 months to 74 years) and for 134 subpopulations defined by one or more of the 
factors race, age, sex, income, and type of residence (central city, urban, rural). The 
geometric standard deviations were adjusted for analytical error before calculation of 
the subpopulation statistics (an estimate of analytical error was given in Appendix II of 
the report). Although blood lead levels for a homogeneous group follow a lognonnal 
distribution (Hasselblad, Stead, and Gaike 1980), there is no reason to believe that 
blood lead levels for the target population—or for the subpopulations defined by the 
factors above—will do so. However, comparing the subpopulation model to data that 
meet the model assumptions would seem pointless—such data cannot violate the 
derived mathematical limits. Figure 6 plots the absolute deviations of the subpopulation 
means from the population mean versus the subpopulation size. For comparison to the 
subpopulation rrodel, the predicted maximum mean (px) is plotted as a triangle, and 
the centroid estimate of the mean (pc) is plotted as a circle, in Figure 6. Figure V plots 
the subpopulation standard deviations versus subpopulation size. There is a trend 

Figure 6. Subpopulation Mean Versus Subpopulation Size 
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Figure 7. Subpopulation Standard Deviation Versus Subpopulation Size 
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toward smaller standard deviations for smaller subpopulations. but the subpopulation 
standard deviations are far from their lower bounds. The subpopulation model limits the 
range of a to 6:2 a < 1, but 17 subpopulations have estimated standard deviations 
greater than one. Of these 17 subpopulations, nine have 95%, two-sided confidence 
intervals for a that overlap one. Thus, the standard deviations greater than one appear 
to be partly due to random variation and partly due to the failure of the normality 
assumption (for logarithms of the data). 

4.       DISCUSSION 

4.1     Mixed Distributions and Gender. 

The subpopulation model uses a lognormal distribution for the susceptibility of 
individuals In the population. Although the model includes the case 0 = 0.5, ttie model 
is not intended to represent sex differences. Sex differences may be better modeled as 
two lognormal distributions—one for each sex. When combined, the two lognormal 
distributions may produce a mixed distribution rather than a lognormal distribution. A 
mixed distribution due to gender effects can be analyzed by applying the subpopulation 
model to each gender separately. The subpopulation model is Intended to represent 
subpopulations created by selection (non-random sampling); it is not intended to 
represent subpopulations that have a known biological difference from the rest of the 
population. 
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4.2     Subpopulation Size Estimation 

For demographically defined subpopulations, estimation of subpopulation size is 
straightforward—for example, individuals aged 65 years or older constituted 12 4% of 
the U.S. population in 2000 (U.S. Census Bureau 2001a). However, this simple method 
is not appropriate for quantifying the size of the military subpopulation. Currently, the 
percentage of the population serving In the military is small; however, I consider ' 
individuals in the military to be randomly selected from a subpopulation of healthy 
physically fit, young adults. Therefore, an estimate of the size of this subpopulation is 
needed. To obtain such an estimate Crosier and Sommerville (2002) examined 
historical military demographics. 

U.S. military strength reached its peak of 12.1 million in 1945 (Dunnigan and Nofi 
1994). The population of the United States in 1945 was 140 million (U.S. Census 
Bureau 2000). Therefore, about 8.6% of the U.S. population in 1945 was in the military 
However, military personnel in World War II were nearly all men, so about 17% of the 
male population was in the military in 1945. Besides the men in the World War II 
military, there were other men who were qualified for military service but did not serve 
Thus, 6 = 0.17 is a lower bound for the size of the subpopulation from which military 
personnel are selected. 

U.S. men from 18 to 45 years old were liable for service in World War II 
{Selective Service 2001). This age group comprised 42% of the male population in 
1999 (US Census Bureau 2001b). However, not every man in this age range is fit for 
military service. Thus, 8 = 0.42 is an upper bound. A reasonable estimate would be 
e = (0.17 + 0.42)/2, or 9 = 0.30. Because resistance to chemical warfare agents is not 
necessarily a function of physical size and strength, female soldiers can be regarded as 
randomly drawn from a resistant female subpopulation that is 30% of the total female 
population. The estimate 6 = 0.30 applies to the subpopulation from which military 
personnel are drawn. There are other resistant subpopulations, such as the working 
population. In 2000, the U.S. workforce was 49% of U.S. population (U.S. Census 
Bureau 2001a, 2001c). As in the case of the armed forces, the actual size of the 
workforce is an underestimate because many individuals who are capable of working 
are not in the workforce. 

For toxicologists, the laboratory animal is a subpopulation of interest. An 
animal's health and susceptibility to toxicants varies over the animal's lifetime. The use 
of young, adult animals in toxicological studies creates a selection bias in the results 
that is unrelated to animal-to-human scaling. To quantify the magnitude of this selection 
bias, note that 14% of U.S. population was in the age range 15-24 years, inclusive, in 
2000 (U.S. Census Bureau 2001a). The age range of animals in a toxicological study 
may be very narrow, but the animals are similar to other young adult animals, so 
6 = 0.15 is a reasonable estimate for the size of the subpopulation of young adult 
laboratory animals. 
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APPENDIX A 

FEASIBLE REGION 

The equation for a normal curve fit to a histogram has a constant factor of 
N wl{2nf^\ where N is the number of data points and w is the width of the dass 
intervals used to construct the histogram. For convenience, and without loss of 
generality, I omit the constant in tiie following derivations. The bell curve for the 
population has the equation 

ypop(z) = exp(-z2/2), (A1) 

which has an area under the curve of (2Tr)^^'^' and a maximum height of one at z = 0. 
The bell curve for a subpopulation of size 8 = A/sub / Wpop, 0 < 9 ^ 1, has the equation 

y.ub(z) = (0/a) exp[- {z-M)^! 2o\ (A2) 

which has an area under the curve of 8 (2TT)^^'^' and a maximum height of 8/a at z = y. 

For fixed 8 and o, tiiere is a feasible range over which p can vary witiiout 
violating the condition that the subpopulation bell curve lie underneath the bell curve of 
the population. When p attains a limit of its feasible range for fixed 8 and a, the 
subpopulation bell curve touches the population bell curve at the contact point. Denote 
the Z coordinate of tiie contact point zb. At the contact point, the heights of the two bell 
curves are equal, ypop( Zc) = ysubC zb), or 

exp(-zb2/2)= (8/a)exp[-(Zc-M)^/2o2]. (A3) 

Also, at tiie contact point, the derivatives {dy/dz) of the two curves are equal: 

exp(-2c2/2)(-zb) = (8/a)exp[-(zb-M)'/2a2](-1/2o2)2(zb-M) (A4) 

Combining (A3) and (A4) yields 

-zb = (-1/2o2)2(2c-M). (A5) 

Multiplying botii sides of (A5) by a^ and simplifying yields 

-Zca^ = -Zc + M. (A6) 

Adding zb to both sides of (A6), factoring Zc-ZcO^tozc(l-o^), and solving for Zc 
yields 

zb=M/(1-a'). (A7) 
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where, to avoid division by zero, o = 1 is not allowed. Substituting u /(1 - a^) for z- In 
(A3) yields ' 

exp{-[M /(1 - a^ )]2 / 2} = (e/a) exp{- [p /(1 - a^) - p ]'/ 2a\ (A8) 

Taking natural logarithms of both sides of (A8) gives 

-[M/(1 -a^)]^/2 = ln(e/a) - [M/(1 -a^)-iif/2a\ (A9) 

Multiplying out the squares within brackets gives 

-[\y'^i^-a^f]^2= \n{Q/a)-[^^{^-a^)^-2^l^/{^ -a^) + ii']/2a^ (A10) 

Moving the second term of the right side to the left side and factoring out p^ gives 

M'{-[1/(1-O2)2]/2 + [1/(1-0^)2-2/(1-a^) + 1]/2a2}=ln(0/a) (A11) 

The expression within braces. {}. can be simplified. Start by multiplying and dividinq bv 
the factors to obtain ^  ^ 

-1/2(1-0^)'+ 1/20^(1-02)2- 2/20^(1-Q^) + i/2a2. (A12) 

Placing all the terms of (A12) on a common denominator gives 

[-o2 + 1 -2(1 -a2)+(i - a'f] I 2a2(l - o^)\ (A13) 

The first two terms, -a^ + 1. are 1 - o^. which makes 1 - a^ a factor common to the 
numerator and the denominator; canceling out the common factor yields 

[1 -2 + (1-o2)]/2a2(i-a2). (A14) 

The numerator simplifies to -a2. which cancels the a^ in the denominator; so -1 /2 
(1 - o ) IS the expression within the braces of (A11). Hence (A11) becomes 

M'{-1/2(1-a2)}=in(e/o). (A15) 

Multiplying both sides of (A15) by -2 (1 - o^) yields 

M' = -2(1-a2)in(e/a). (AI6) 

The square root of (A16) is equation (4) of the text. 
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APPENDIX B 

MAXIMUM SUBPOPULATION MEAN 

Because the equation 

M = ±[-2(1-a2)ln(e/a)l^'2 (B1) 

gives the maximum feasible |j as a function of 9 and a, it is possible to obtain, for fixed 
6. the a at which the maximum feasible M occurs by setting the derivative of (81) with 
respect to a equal to zero, and solving for a. Monotonic transformations are often used 
to simplify this process: if p attains its maximum at a = Ox, then any monotonic 
transformation of \i will have a maximum at a = Ox. Thus, squaring (81) gives 

p2 = _2(i-a2)ln(0/a). (B2) 

Dividing by 2, noting that -1 (1 - o^) = (a^ -1). and separating ln(e/a) gives 

M^/2 = (a2-1)[ln(e)-ln(a)l. (B3) 

or 

M^/2 = a2|n(e)-a2|n(a)-ln(e) + ln(o). (B4) 

Taking the derivative of (84) with respect to a gives 

d(M^/2)/da = 2aln(e)-a^/o-2aln(a) + 1/a (B5) 

Setting (85) equal to zero fixes the value of a at Ox: 

2 Ox ln(9) - Ox- 2 Ox In(ax) + 1 / Ox = 0 (B6) 

Multiplying by -1 / 2 Ox gives 

-ln(e) + 1/2 +ln(Ox)-1/(2Ox^) = 0. (B7) 

which is not readily solved for Ox as a function of 9. Thus, for fixed 9,1 used a binary 
search (also known as bisection) to bracket Ox. The initial bounds for Ox were 9 and 1; 
iteration continued until the difference between the lower bound and the upper bound 
was less than 10"*. Then (81) was used to obtain pxfrom Ox. 
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APPENDIX C 

EXTREME SUBPOPULATION-TO-POPULATION CONVERSION 

When estimating the population EDsofrom a subpopulation ED50 and the 
subpopulation probit slope, the extreme case for conversion process is not at p = MX- TO 
find the combination of |j and a yielding the largest difference between the 
subpopulation median and the population median, start with the equation for the 
conversion factor (CF) of a subpopulation ED50 to the population ED50: 

OF = antilog [{0-\i)la m^b ]- (C1) 

Equation (C1) can be rewritten as CF = antilog [ (-1 / /Hsub ){vlo)], from which it is 
dear that the CF is maximized when the ratio M /a is maximized. To proceed from (C1), 
talce logarithms of both sides of (C1) and substitute [ -2 (1 - a^) ln( 9 /a) ] ^'^ from 
equation (4) of the text for JJ: 

log(CF) = {0-[-2(1-a2)ln(e/a)l^''2^}/amsub (C2) 

Multiply both sides by mmb and then square both sides: 

[/778ub log{CF)f = [ -2 (1 - a^) ln( 9/a) ] / o^ (C3) 

Moving the 0^ of the denominator Into the nunfierator and rewriting 9 /a as 9 a " ■" yields 

[m.ub log(CF)f = -2 (a-2-1) ln(9a-') (C4) 

Now take the derivative with respect to a and set the derivative equal to zero. Setting 
the derivative to zero fixes the value of a, so it is denoted Or. 

-2 [-2(ar-^) ln(9ar-"') + (ar^-l) (-9ar-^/90r-') ] = 0 (C5) 

Simplify (-9ar"^/9ar^) to (-ar^) and multiply both sides by-Or^/2: 

-2ln(9or-') + ar^(ar-'-1)(-Or-') =0 (C6) 

Multiplying out Or^ (Cr"^ -1) i-or^) reduces (C6) to 

-2ln(9/ar) + (ar^-1) = 0 (C7) 

Separating -2 ln(9/ar) to -2 ln(9) + 2 In(Or). dividing both sides by 2, and adding ln(9) 
to both sides produces 

In(ar) + {Or^ - 1 )/2 = ln(9). (C8) 
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Subtracting (Or^ -1)/2 from both sides of (C8) followed by exponentiation of both 
sides yields 

Or = eexp[(1-Or^)/2]. (C9) 

Equation (C9) was solved numerically (by iteration) to obtain Or. The starting 
value for Or was (8 +1 )/2. Because an overestimate of Or [as the input on the right 
side of (C9) ] yields an underestimate [as the output on the left side of (C9) ] and vice 
versa, the input and output values of Cr were averaged to obtain the input for the next 
iteration. Iteration continued until the difference between the Input value and the output 
value was less than 10"®. In Figure 2 of the text, the point (Cr. Mr) can be found by 
drawing a line from the origin tangent to the feasible region; the line will have slope 
= Mr/Or. 
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